Introduction to Java

2D Array

Basics

Lecture Contents

* Review of Array
e 2D Array

— Declaration
— Initialization using a literal

— Accessing elements
« for loop
e Enhanced for loop (for-each loop)

— Initialization using loops
& — Variable length rows (not in AP Java Subset)

l . » Multidimensional Arrays (not in AP Java Subset)

- A

* How do we declare an array, for example, an array of integers.
(Just declare the array, do not allocate memory for it.) |

Declaring an Array

Int[] intArray
o X

- A

* Declaring an array only creates the ob]ect it does not allocate
memory to store the array.

Declaring an Array

int[] intArray;

Int[] intArray
o X

Allocating Memory for an Array

* How can we allocate memory for the array?

int[] intArray;

int[] intArray
® >

oo
Iy
(@] 1)V}
o|lw

- i

Allocating Memory for an Array

e To allocate memory, we use the keyword new.

int[] intArray;
intArray = new 1int[4];

 new will allocate the array and initialize all values to zero.

int[] intArray
® >

oo
Iy
(@] 1)V}
o|lw

h.

Initializing an Array

* How can we initialize an array?

int[] intArray
® >

w|Oo

ey
NN
a|w

- i

Initializing an Array

* We can declare and initialize an array with comma- separated
sequence of elements enclosed in curly braces:

int[] intArray = { 3, 7, 2, 5 };

int[] intArray
® >

w|Oo

ey
NN
a|w

- i

* How do we determine the number of elements in an array?

int[] intArray = { 3, 7, 2, 5 };

Finding the Length of an Array

int[] intArray
® >

—

w|o
NN
(G2] [OF)

len

4

h.

- i

. Thelength1mﬂdghmsusﬂmrumﬂmrofdenmnﬁinananay

int[] intArray = { 3, 7, 2, 5 };
int len = intArray. length;

Finding the Length of an Array

* Notice the largest index is always one less than the value given by
the Length field.

int[] intArray 0 1 2 3
@ P> 3 7 2 5
len
O 4

h.

- i

Traversing an Array Sequéntially

 We use the . Length field to traverse an array forwards: |

int[] intArray = {8 a0 5 -1

I -1l

for(int 1 = 0; i < intArray.length; i++) {
intArray[i] = 4 - 1i;
}
intArray
0 1 2 3
int] [@ » 4 2 1
int length 4

- i

 We use the . Length field to traverse an array backwards;

Traversing an Array Sequéntially

int[] intArray = £ @x 72, 5 }:
for(int 1 = intArray.length-1; i>=0 i--) {
intArray[i] = 4 - 1i;

¥
intArray
0 1 2 3
int[] @ > 4 2 1
int length 4

Lecture Contents

« Review of Array v/
e 2D Array

~ Declaration and Initialization
— Initialization using a literal

— Accessing elements
« for loop
e Enhanced for loop (for-each loop)

— Initialization using loops
& — Variable length rows (not in AP Java Subset)

l . » Multidimensional Arrays (not in AP Java Subset)

- | i

2D Array Declaration and Initialization

* Declaring and initializing an array (one-dimensional)

int[] intArray = new 1int[4];

int[] intArray 0 1 2 3
® > 0. % 0 0 0

* Declaring and initializing a two-dimensional array, or matrix

final 1int rows = 3;
final int columns = 4,
int[][] table = new int[rows][columns];

int[][] table
& = 0 1 2 3
0 0 0 0 0
. 1 0 0 0 0
0 0 0 0

- | | -\

* Declaring and initializing a two-dimensional array, or matrix

2D Array Declaration and Initialization

final int rows = 3;
final int columns = 4;
int[][] table = new int[rows][columns];

A more accurate representation

int[](] table of the two-dimensional memory
N structure in Java.
int[] 0 1 2 3
0 » O 0 0 M=
’ N 0 0 0
5 S S 0 0 0

2D Array Initialization

e Which are valid:

int[][] arrl = new int[][];

int[][] arr2 = new 1nt[3][];
int[][] arr3 = new int[][4];
int[][] arrd = new 1nt[3][4];

* Let’s go through one-by-one...

h.

2D Array Initialization

e [s this valid?

int[][] arrl = new int[][];

- i

2D Array Initialization

e [s this valid?

Xint[][] arrl = new int[][]_;

* No. Just as with a one-dimensional array, this is invalid:
X int[] arrid = new int[];

because the compiler has no idea what space needs to be allocated to

the array.
Int[] arr1d

0 e
. O '

e 28

..................

2D Array Initialization

e [s this valid?

int[][] arr2 = new int[3][];

- i

2D Array Initialization

e [s this valid?

Jint[][] arr2 = new int[3][];

* Yes. Perhaps surprisingly, but the compiler allocates space for the
array of rows. Each int[] issettonull.

int[][] table
0\

int[]
O| null

null
2| null

h.

1 i

- i

2D Array Initialization

e [s this valid?

Jint[][] arr2 = new int[3][];

* Yes. Perhaps surprisingly, but the compiler allocates space for the

array of rows. B]
Note: before integer values can be inserted

into a row, the row needs space allocated:

arr2[1] = new 1int[4];

i AH B arr2[1][2] = 7;
int(]

O null

int[][] table

—

h.

oo

2 3
I 0

{4

2 null

2D Array Initialization

e [s this valid?

int[1[] arr3 = new int[][4];

- i

2D Array Initialization

e [s this valid?

Xint[] [] arr3 = new int[][4];
* No. We are given a row length, but the compiler does not know how
many rows to create.

int[][] table
0\

..

2D Array Initialization

e [s this valid?

int[1[] arrd = new int[3][4];

- i

2D Array Initialization

e [s this valid?

Jint[][] arr4 = new int[3][4];

* Yes. The compiler allocates space for the entire two-dimensional
array. The 1nt in each cell is set to O (zero).

int[][] table

.\
Int]] 0 1 2 3
0 R = 0 0. euD
1 L yiea 0 0 0
5 MRS 0 0 0

h.

- i

2D Array Initialization us-ing a literal

int[][] table =

{ | |
{ 11, 12, 13, 14 }, // row 1s type 1int[]
{ 21, 22, 23, 248
{ 31, 32, 33,348

i

A conceptual diagram
of the memory structure

0 1 2 &

11 12 13 14
1 21 22 23 24

31 32 33 34

- | | -\

2D Array Initialization us-ing a literal

int[][] table =

: { 11, 12, 13, 14 }, // row 1s type 1int[]
{ 21, 22, 23, D4
{ 31, 32, 33,3488
i
int[](] table A more accurate diagram
o« of the memory structure
It} 0 1 2 3
0 o[11 | ABRaddy ity
1 =] 22 23 24
2 — e 32 33 34

- | | -\

private static void pr1nt2DIntArray(1nt[][] a) {
for(int 1 = 0; 1 < a.length; 1i++) {
for(int j = 0; J < a[1].length; j++) {
System.out.print(" " + a[1][]]);

Accessing a 2D Array

b
System.out.println();
} int[][] table
0\
il 0 1 5Ly A
0 11 12 13 Tavi
1 21 22 23 28

L&l

31 32 33 34

- | | -\

private static void pr1nt2DIntArray(1nt[][] a) {
for(int[] row: a) {
for(int column: row) {

Accessing a 2D Array

System.out.print(" " + column);
¥
System.out.println();

} int[][] table
0\
il 0 1 A e
0 11 12 13 14
1 21 927 1| :23 J3i08®

L&l

31 32 33 34

2D Array Initialization

private static void 1n1t2DArray(1nt[][] a) {

for(int i = 0; i < a.length; i++) {

for(int j = 0; j < a[i].length; j++) {
: al[1][1] = (EEEE0) + J5

o000 |0
@] [e]) [an] FH
OIOC|IOIN
C'DOOOO

- i

2D Array Initialization

private static void 1n1t2DArray(1nt[][] a) {
for(int 1 = 0; 1 < a.length; 1i++) {

for(int j = 0; j < a[i].length; j++) {
a[1][1] = (=§e&@) + J;

¥

¥
ks

0 1 2 3
00 01 02 03

1 10 11 12 13
20 21 22 23 -

- i

2D Array Initialization

private static void 1n1t2DArray(1nt[][] a) {
int count = 0;
for(int[] row : a) {
for(int column : row) {
column = count++;
}

o000 |0
@] [e]) [an] FH
OIOC|IOIN
C'DOOOO

- A

2D Array Initialization

private static void 1n1t2DArray(1nt[][] a) {
int count = 0;
for(int[] row : a) {
for(int column : row) {
column = count++;
}

o000 |0
@] [e]) [an] FH
OIOC|IOIN
C.DOOCJO

Array values unchanged!

2D Array Initialization

private static void 1n1t2DArray(1nt[][] a) {
int count = 0;

for(int[] row : a) {

for(int j = 0; j < row.length; j++) {
row[Jj] = count++;
}

~N|[W[W

—
|~ |O|O
OO =|=
—
oMV

—
—

- i

2D Array — Variable length rOwWS

Not in AP Java Subset!
int[][] table =

{ _ |
{ 11, 12, 13, 14 }, // row 1is type int[]
{21,227 S28L ~// this row shorter!

{ 31, 32, 33, 34, 35 } // this row longer!

Iy ‘

0 1 2 3

11 12 13 14
1 21 22 23 .

31 32 33 34 -

- A

2D Array — Variable length rOwWS

Not in AP Java Subset!
int[][] table =

{ _ |
{ 11, 12, 13, 14 }, // row 1is type int[]
{21,227 S28L ~// this row shorter!

{ 31, 32, 33, 34, 35 } // this row longer!

Iy *

private static void print2DIntArray(int[][] a) {
for(int i1=0; i<a.length; i++) {
for(int j=0; j<a[i].length; j++) {
System.out.print(" " + a[i][]]);
1 .

&.out.println(); Cannot use a[0] .lehgth

-. b with variable length rows.
}

- A

Multidimensional Arrays |

Not in AP Java Subset!
int[][][] a3D =

{
{ |
{ 111, 112 g 14},
{ 121, 122; B0 4
{ 131, 132, 435518 &
Iy
{

211, 212, 218 "Odu
221, 222, 223 F 2240
231, 232, 1038 # s

e Yate Yaon

Introduction to Java

2D Array

Basics

