

2D Array
Basics

Introduction to Java

Lecture Contents

● Review of Array
● 2D Array

– Declaration
– Initialization using a literal
– Accessing elements

● for loop
● Enhanced for loop (for-each loop)

– Initialization using loops
– Variable length rows (not in AP Java Subset)

● Multidimensional Arrays (not in AP Java Subset)

Declaring an Array

● How do we declare an array, for example, an array of integers.
(Just declare the array, do not allocate memory for it.)

int[] intArray

int offset
int count

char value

Declaring an Array

● Declaring an array only creates the object, it does not allocate
memory to store the array.

int[] intArray;

int[] intArray

int offset
int count

char value

Allocating Memory for an Array

● How can we allocate memory for the array?

int[] intArray;

int[] intArray

0
0 1 2 3

0 0 0

int offset
int count

char value

Allocating Memory for an Array

● To allocate memory, we use the keyword new.

● new will allocate the array and initialize all values to zero.

int[] intArray;
intArray = new int[4];

int[] intArray

0
0 1 2 3

0 0 0

int offset
int count

char value

Initializing an Array

● How can we initialize an array?

int[] intArray

3
0 1 2 3

7 2 5

int offset
int count

char value

Initializing an Array

● We can declare and initialize an array with comma-separated
sequence of elements enclosed in curly braces:

int[] intArray = { 3, 7, 2, 5 };

int[] intArray

3
0 1 2 3

7 2 5

int offset
int count

char value

Finding the Length of an Array

● How do we determine the number of elements in an array?

int[] intArray = { 3, 7, 2, 5 };

int[] intArray

len

3

4

0 1 2 3
7 2 5

Finding the Length of an Array

● The length field gives us the number of elements in an array.

● Notice the largest index is always one less than the value given by
the length field.

int[] intArray = { 3, 7, 2, 5 };
int len = intArray.length;

int[] intArray

len

3

4

0 1 2 3
7 2 5

Traversing an Array Sequentially

● We use the .length field to traverse an array forwards:

int[] intArray = { 3, 7, 2, 5 };
for(int i = 0; i < intArray.length; i++) {
 intArray[i] = 4 – i;
}

int[] 4
0 1 2 3

4
3 2 1

intArray

int offset

int length

int count

char value

Traversing an Array Sequentially

● We use the .length field to traverse an array backwards:

int[] intArray = { 3, 7, 2, 5 };
for(int i = intArray.length-1; i>=0 i--) {
 intArray[i] = 4 – i;
}

int[] 4
0 1 2 3

4
3 2 1

intArray

int offset

int length

int count

char value

Lecture Contents

● Review of Array
● 2D Array

– Declaration and Initialization
– Initialization using a literal
– Accessing elements

● for loop
● Enhanced for loop (for-each loop)

– Initialization using loops
– Variable length rows (not in AP Java Subset)

● Multidimensional Arrays (not in AP Java Subset)

✓

2D Array Declaration and Initialization

● Declaring and initializing an array (one-dimensional)

0
0

int[][] table

0
1
2

1 2 3
0 0 0

0 0 0 0
0 0 0 0

final int rows = 3;
final int columns = 4;
int[][] table = new int[rows][columns];

● Declaring and initializing a two-dimensional array, or matrix

int[] intArray = new int[4];
int[] intArray

0
0 1 2 3

0 0 0

2D Array Declaration and Initialization

● Declaring and initializing a two-dimensional array, or matrix

final int rows = 3;
final int columns = 4;
int[][] table = new int[rows][columns];

0
0 0 0 0

0000

0 0 0 0

0

int[][] table

int[]

1

2

1 2 3

A more accurate representation
of the two-dimensional memory
structure in Java.

2D Array Initialization

● Which are valid:

int[][] arr1 = new int[][];
int[][] arr2 = new int[3][];
int[][] arr3 = new int[][4];
int[][] arr4 = new int[3][4];

● Let’s go through one-by-one...

2D Array Initialization

● Is this valid?

int[][] arr1 = new int[][];

2D Array Initialization

● Is this valid?

int[][] arr1 = new int[][];

● No. Just as with a one-dimensional array, this is invalid:

because the compiler has no idea what space needs to be allocated to
the array.

int[] arr1d = new int[];

✗

✗

0
0int[] arr1d 1

0

2D Array Initialization

● Is this valid?

int[][] arr2 = new int[3][];

2D Array Initialization

● Is this valid?

int[][] arr2 = new int[3][];

● Yes. Perhaps surprisingly, but the compiler allocates space for the
array of rows. Each int[] is set to null.

✓

null

null

null

0

int[][] table

int[]

1

2

2D Array Initialization

● Is this valid?

int[][] arr2 = new int[3][];

● Yes. Perhaps surprisingly, but the compiler allocates space for the
array of rows.

✓

null

null

0

int[][] table

int[]

1

2

0
0

0
1

7
2

0
3

Note: before integer values can be inserted
into a row, the row needs space allocated:

arr2[1] = new int[4];
arr2[1][2] = 7;

2D Array Initialization

● Is this valid?

int[][] arr3 = new int[][4];

2D Array Initialization

● Is this valid?

int[][] arr3 = new int[][4];

● No. We are given a row length, but the compiler does not know how
many rows to create.

✗

0
0

0

int[][] table

int[]

1

1 2 3
0 0 0

0 0 0 0

2D Array Initialization

● Is this valid?

int[][] arr4 = new int[3][4];

2D Array Initialization

● Is this valid?

int[][] arr4 = new int[3][4];

● Yes. The compiler allocates space for the entire two-dimensional
array. The int in each cell is set to 0 (zero).

✓

0
0 0 0 0

0000

0 0 0 0

0

int[][] table

int[]

1

2

1 2 3

2D Array Initialization using a literal

int[][] table =
 {
 { 11, 12, 13, 14 }, // row is type int[]
 { 21, 22, 23, 24 },
 { 31, 32, 33, 34 }
 };

11
0

0
1
2

1 2 3
12 13 14

21 22 23 24
31 32 33 34

A conceptual diagram
of the memory structure

2D Array Initialization using a literal

int[][] table =
 {
 { 11, 12, 13, 14 }, // row is type int[]
 { 21, 22, 23, 24 },
 { 31, 32, 33, 34 }
 };

11
0

0

int[][] table

int[]

1

2

1 2 3
12 13 14

21 22 23 24

31 32 33 34

A more accurate diagram
of the memory structure

Accessing a 2D Array

private static void print2DIntArray(int[][] a) {
 for(int i = 0; i < a.length; i++) {
 for(int j = 0; j < a[i].length; j++) {
 System.out.print(" " + a[i][j]);
 }
 System.out.println();
 }
}

11
0

0

int[][] table

int[]

1

2

1 2 3
12 13 14

21 22 23 24

31 32 33 34

Accessing a 2D Array

private static void print2DIntArray(int[][] a) {
 for(int[] row: a) {
 for(int column: row) {
 System.out.print(" " + column);
 }
 System.out.println();
 }
}

11
0

0

int[][] table

int[]

1

2

1 2 3
12 13 14

21 22 23 24

31 32 33 34

2D Array Initialization

private static void init2DArray(int[][] a) {
 for(int i = 0; i < a.length; i++) {
 for(int j = 0; j < a[i].length; j++) {
 a[i][j] = (i * 10) + j;
 }
 }
}

0
0

0
1
2

1 2 3
0 0 0

0 0 0 0
0 0 0 0

2D Array Initialization

00
0

0
1
2

1 2 3
01 02 03

10 11 12 13
20 21 22 23

private static void init2DArray(int[][] a) {
 for(int i = 0; i < a.length; i++) {
 for(int j = 0; j < a[i].length; j++) {
 a[i][j] = (i * 10) + j;
 }
 }
}

2D Array Initialization

private static void init2DArray(int[][] a) {
 int count = 0;
 for(int[] row : a) {
 for(int column : row) {
 column = count++;
 }
 }
}

0
0

0
1
2

1 2 3
0 0 0

0 0 0 0
0 0 0 0

2D Array Initialization

private static void init2DArray(int[][] a) {
 int count = 0;
 for(int[] row : a) {
 for(int column : row) {
 column = count++;
 }
 }
}

0
0

0
1
2

1 2 3
0 0 0

0 0 0 0
0 0 0 0

Array values unchanged!

2D Array Initialization

private static void init2DArray(int[][] a) {
 int count = 0;
 for(int[] row : a) {
 for(int j = 0; j < row.length; j++) {
 row[j] = count++;
 }
 }
}

0
0

0
1
2

1 2 3
1 2 3

4 5 6 7
8 9 10 11

2D Array – Variable length rows

int[][] table =
 {
 { 11, 12, 13, 14 }, // row is type int[]
 { 21, 22, 23 }, // this row shorter!
 { 31, 32, 33, 34, 35 } // this row longer!
 };

11
0

0
1
2

1 2 3
12 13 14

21 22 23
31 32 33 34

Not in AP Java Subset!

2D Array – Variable length rows

int[][] table =
 {
 { 11, 12, 13, 14 }, // row is type int[]
 { 21, 22, 23 }, // this row shorter!
 { 31, 32, 33, 34, 35 } // this row longer!
 };

Not in AP Java Subset!

private static void print2DIntArray(int[][] a) {
 for(int i=0; i<a.length; i++) {
 for(int j=0; j<a[i].length; j++) {
 System.out.print(" " + a[i][j]);
 }
 å.out.println();
 }
}

Cannot use a[0].length
with variable length rows.

Multidimensional Arrays

int[][][] a3D =
 {
 {
 { 111, 112, 113, 114 },
 { 121, 122, 123, 124 },
 { 131, 132, 133, 134 }
 },
 {
 { 211, 212, 213, 214 },
 { 221, 222, 223, 224 },
 { 231, 232, 233, 234 }
 }
 };

Not in AP Java Subset!

2D Array
Basics

Introduction to Java

